If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2+4x=140
We move all terms to the left:
24x^2+4x-(140)=0
a = 24; b = 4; c = -140;
Δ = b2-4ac
Δ = 42-4·24·(-140)
Δ = 13456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{13456}=116$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-116}{2*24}=\frac{-120}{48} =-2+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+116}{2*24}=\frac{112}{48} =2+1/3 $
| 1/3+-3p=114 | | -y+9=3 | | 2(x-5)=x+19 | | 4/5x-1=1+4/5x | | 2n+0.1n=9.8 | | 14x-5-6x=3x/ | | 3/x=1.19 | | 7=1.25t=43.25 | | 2/1/3y-5=16 | | -13.9+b12.8=-13.306 | | y+12/4=9 | | F(3)=x^2+5x-9 | | 1/3/4x+6=20 | | 3(u-9)=7u+13 | | 17+4h+2=11-5h | | 8+p=24 | | -7=3x^2 | | 4a+8=-36 | | -10=x^2+x | | 61.2/82.4=x | | (1.5x)+8x=1615 | | -6u+2(u+2)=-36 | | 29-x➗3=x+5 | | 6(2x-6)=54x | | 3÷5x=21 | | 3-2j=1 | | -6u+2(u+2=-36 | | -7-1/16x=-2 | | -5y-8=4y+19= | | 1700+140c=4500 | | 6-5(a+1)=7+a= | | 2(-x-3)+1=19 |